Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Xiang-Sheng Xu, ${ }^{\text {a }}$ Ya-Ping Lü, ${ }^{\text {b }}$ Dong-Shun Deng, ${ }^{\text {b }}$ Mao-Lin Hu ${ }^{\text {c }}$ and Zhi-Min Jin ${ }^{\text {b }}$ *

${ }^{\text {a }}$ College of Chemical Engineering and Materials Science, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, ${ }^{\text {b }}$ College of Pharmaceutical Sciences, Zhejiang University of Technology, Hangzhou 310014, People's Republic of China, and ${ }^{\text {' }}$ school of Chemistry and Materials Science, Wenzhou Normal College, Zhejiang, Wenzhou 325027, People's Republic of China

Correspondence e-mail: zimichem@sina.com

Key indicators

Single-crystal X-ray study
$T=289 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.028$
$w R$ factor $=0.075$
Data-to-parameter ratio $=16.8$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2005 International Union of Crystallography Printed in Great Britain - all rights reserved

Tetrakis(3,5-lutidine)dichloronickel(II)

In the title compound, $\left[\mathrm{NiCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{4}\right]$, where $\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}$ is 3 ,5lutidine, the $\mathrm{Ni}^{\mathrm{II}}$ atom is coordinated by two Cl atoms and four N atoms from 3,5-lutidine groups. The geometry around the $\mathrm{Ni}^{\mathrm{II}}$ atom, which is located at a special position of symmetry 422, is octahedral. Molecules of the title compound are connected by $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ intermolecular hydrogen bonds and $\mathrm{C}-\mathrm{H} \cdots \pi$ interactions to form a three-dimensional structure.

Comment

Various 3,5-lutidine compounds have been reported previously (Abu-Youssef et al.,1999; Bolte et al., 2000; Carmalt et al., 2000; Goher et al., 1997; Hu \& Englert, 2002; Maunder \& Sella, 1998; Minghetti et al., 1998; Modec et al., 2000; Nogai et al., 2003; Nyman et al., 1997; Tessier \& Rochon, 2001; van Poppel et al., 2001; Vries et al., 2001). We have synthesized the title compound, (I), and report its structure here.

(I)

In (I), the $\mathrm{Ni}^{\mathrm{II}}$ atom is coordinated octahedrally by four 3,5lutidine ligands through four N atoms and two Cl atoms (Fig. 1). The $\mathrm{Ni}^{\mathrm{II}}$ atom is located at a special position of symmetry 422. The dihedral angle between the plane of each pyridine ring and the N_{4} plane is 46.1 (2) ${ }^{\circ}$. The geometrical outline of (I) resembles a screw propeller; a similar feature is also observed in an ytterbium compound, (3,5-lutidine) $4_{4} \mathrm{YbI}_{2}$ (Maunder \& Sella 1998). The two axial positions are filled by two Cl atoms.

There are five kinds of $\mathrm{C}-\mathrm{H} \cdots \mathrm{Cl}$ hydrogen bonds (Table 2), with $\mathrm{H} \cdots \mathrm{Cl}$ distances shorter than the sum of the van der Waals radii $[r(\mathrm{H}) 1.16$ (Zefirov \& Zorkii, 1974) and $1.2 \AA$ (Bondi, 1964); $r(\mathrm{Cl}) 1.90 \AA$ (Zefirov \& Zorkii, 1974)]. A $\mathrm{C}-\mathrm{H} \cdots \pi$ interaction $\left[\mathrm{H} 4 B \cdots C_{\mathrm{p}}(-x, 1-y,-z)=\right.$ 3.299 (3) \AA, where C_{p} is the centroid of the pyridine ring] plays a minor role in the crystal structure (Fig. 2).

Figure 1
The formula unit with atom labels, showing 40% probability displacement ellipsoids.

Experimental

The title compound was prepared by a hydrothermal procedure from a mixture of 3,5 -lutidine ($5 \mathrm{mmol}, 0.53 \mathrm{~g}$), $\mathrm{NiCl}_{2} \cdot 6 \mathrm{H}_{2} \mathrm{O}(1 \mathrm{mmol}$, 0.24 g) and water (30 ml) in a 30 ml Teflon-lined stainless steel reactor. The mixture was heated to 415 K for 3 d . The reaction system was then slowly cooled to room temperature. Green block-shaped crystals of (I), with a yield of 76% based on 3,5-lutidine, were collected and washed with distilled water. IR (KBr): 3583, 3391, 3267, 2922, 2846, 1708, 1445, 1416, 1331, 1135, 1049, $1028 \mathrm{~cm}^{-1}$.

Crystal data

[$\left.\mathrm{NiCl}_{2}\left(\mathrm{C}_{7} \mathrm{H}_{9} \mathrm{~N}\right)_{4}\right]$
$M_{r}=558.20$
Tetragonal, $P 4 / n n c$
$a=11.583$ (1) \AA
$c=10.747$ (1) \AA
$V=1441.8(2) \AA^{3}$
$Z=2$
$D_{x}=1.286 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens $P 4$ diffractometer

 ω scansAbsorption correction: ψ scan
(North et al., 1968)
$T_{\text {min }}=0.723, T_{\text {max }}=0.781$
1894 measured reflections
757 independent reflections
502 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.075$
$S=0.91$
757 reflections
45 parameters
H -atom parameters constrained

Mo $K \alpha$ radiation

Cell parameters from 29 reflections
$\theta=2.6-13.0^{\circ}$
$\mu=0.88 \mathrm{~mm}^{-1}$
$T=289$ (2) K
Block, green
$0.38 \times 0.38 \times 0.28 \mathrm{~mm}$

$$
R_{\text {int }}=0.025
$$

$\theta_{\text {max }}=26.5^{\circ}$
$h=0 \rightarrow 14$
$k=0 \rightarrow 14$
$l=-1 \rightarrow 13$
3 standard reflections every 97 reflections intensity decay: 4.2%

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0408 P)^{2}\right] \\
& \text { where } P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }<0.001 \\
& \Delta \rho_{\max }=0.21 \mathrm{e}^{-3} \\
& \Delta \rho_{\min }=-0.17 \mathrm{e}^{-3}
\end{aligned}
$$

Extinction correction: SHELXL97 Extinction coefficient: 0.0049 (11)

Figure 2
A packing diagram, viewed along the c axis.

Table 1
Selected bond lengths (\AA).

$\mathrm{Ni}-\mathrm{N}$	$2.136(2)$	$\mathrm{C} 1-\mathrm{C} 2$	$1.383(3)$
$\mathrm{Ni}-\mathrm{Cl}$	$2.4523(11)$	$\mathrm{C} 2-\mathrm{C} 3$	$1.387(3)$
$\mathrm{N}-\mathrm{C} 1$	$1.336(2)$	$\mathrm{C} 2-\mathrm{C} 4$	$1.499(3)$

Table 2
Hydrogen-bond geometry ($\AA^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{C} 1-\mathrm{H} 1 \cdots \mathrm{Cl}$	0.93	2.90	$3.361(3)$	112

All H atoms were placed in calculated positions $(\mathrm{C}-\mathrm{H}=0.93 \AA$ for pyridyl CH groups and $\mathrm{C}-\mathrm{H}=0.96 \AA$ for CH_{3} groups) and allowed to ride on the parent atoms, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}(\mathrm{C})$.

Data collection: XSCANS (Siemens, 1994); cell refinement: XSCANS; data reduction: SHELXTL (Siemens, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: SHELXTL; software used to prepare material for publication: SHELXTL.

References

Abu-Youssef, M. A. M., Escuer, A., Gatteschi, D., Goher, M. A. S., Mautner, F. A. \& Vicente, R. (1999). Inorg. Chem. 38, 5716-5723.

Bolte, M., Hensen, K. \& Spangenberg, B. (2000). J. Chem. Crystallogr. 30, 245249.

Bondi, A. (1964). J. Phys. Chem. 68, 441-451.
Carmalt, C. J., Mileham, J. D., White, A. J. P. \& Williams, D. J. (2000). New J. Chem. 24, 929-930.
Goher, M. A. S., A1-Salem, N. A. \& Mautner, F. A. (1997). Polyhedron, 16, 3747-3755.
Hu, C. H. \& Englert, U. (2002). CrystEngComm, 4, 20-25.
Maunder, G. H. \& Sella, A. (1998). Polyhedron, 17, 63-68.
Minghetti, G., Cinellu, M. A., Pinna, M. V., Stoccoro, S., Zucca, A. \& Manassero, M. (1998). J. Organomet. Chem. 568, 225-232.
Modec, B., Brenëië, J. V., Golië, L. \& Daniels, L. M. (2000). Polyhedron, 19, 1407-1414.
Nogai, S., Schriewer, A. \& Schmidbaur, H. (2003). Dalton Trans. pp. 3165-317.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351359.

Nyman, M. D., Hampden-Smith, M. J. \& Duesler, E. N. (1997). Inorg. Chem. 36, 2218-2224.

metal-organic papers

Poppel, L. G. van, Bott, S. G. \& Barron, A. R. (2001). J. Chem. Crystallogr. 31, 417-420.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Siemens (1994). XSCANS. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.

Siemens (1998). SHELXTL. Siemens Analytical X-ray Instruments Inc., Madison, Wisconsin, USA.
Tessier, C. \& Rochon, F. D. (2001). Inorg. Chim. Acta, 322, 37-46.
Vries, E., Nassimbeni, L. R. \& Su, H. (2001). Eur. J. Org. Chem. pp. 1887-1892. Zefirov, Yu. V. \& Zorkii, P. M. (1974). Zh. Strukt. Khim. 15, 118-122.

